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Abstract—Motivated by applications in multi-sensor array
detection and estimation, this paper studies the problem of
tracking the principal eigenvector and the principal subspace of
a signal’s covariance matrix adaptively in a fully decentralized
wireless sensor network (WSN). Sensor networks are traditionally
designed to simply gather raw data at a fusion center, where all
the processing occurs. In large deployments, this model entails
high networking cost and creates a computational and storage
bottleneck for the system. By leveraging both sensors’ abilities to
communicate and their local computational power, our objective
is to propose distributed algorithms for principal eigenvector and
principal subspace tracking. We show that it is possible to have
each sensor estimate only the corresponding entry of the principal
eigenvector or corresponding row of the -dimensional principal
subspace matrix and do so by iterating a simple computation that
combines data from its network neighbors only. This paper also
examines the convergence properties of the proposed principal
eigenvector and principal subspace tracking algorithms analyti-
cally and by simulations.

Index Terms—Asynchronous time, average consensus, dis-
tributed algorithm, gossiping, signal detection, stochastic approx-
imation, subspace estimation, subspace tracking, synchronous
time.

I. INTRODUCTION

S UBSPACE-BASED signal processing methods have been
applied successfully to both spatial and temporal spectral

analysis. These methods are essentially applications of the so
called principal component analysis (PCA). Let be
a data vector sampled at and zero-mean over . In most of
the relevant applications, the covariance matrix of a zero-mean
vector of measurements can be characterized by the following
eigenvalue-decomposition (EVD)

where with ordered eigenvalues
, and the submatrix identifies a

set of principal components that captures as much “energy”
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of the sampled signal as possible. The submatrix speci-
fies a vector space (i.e., the noise space) which is orthogonal to

. A principal subspace is defined as the vector space spanned
by the principal components. Subspace estimation is essential
in many applications, for example, noise reduction, data com-
pression, direction of arrival (DOA) estimation, etc. Motivated
by the significance of subspace estimation in signal processing,
this paper studies the following subspace tracking problem in a
fully decentralized WSN.

A. Problem Statement

Consider a network of sensor nodes, each collecting a
zero-mean measurement at time , for . De-
note by a vector obtained by stacking these mea-
surements. Its covariance matrix is defined as .
From this information, and using only limited local communi-
cation between neighboring nodes, the network needs to dis-
tributively determine the first principal component of , that is,
an eigenvector associated with the largest eigenvalue of . Pre-
cisely, in our first algorithm, each node computes a scalar
such that the vector is an estimate of
the principal eigenvector of .

In our second algorithm, the network is required to distribu-
tively track the principal subspace of for any given dimension

, where . Suppose are the eigenvectors
associated with the largest eigenvalues of . Let
denote an equivalence class to the matrix
with an equivalence relation

where is a unitary matrix (1)

As a result of the algorithm proposed in this paper, each
node in the network asymptotically computes a row vector

, which is the th row of the matrix given
by

...
...

...

such that is a principal subspace of .

B. Previous Works

Early approaches to estimate the subspace of a covariance
matrix are based on the batch singular value decomposition
(SVD) or the eigenvalue decomposition (EVD) of a data matrix
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[1]. However, they are very computationally expensive because
repeated computations of SVD/EVD are required for adaptive
processing. To overcome this difficulty, many adaptive subspace
estimation techniques have been proposed, such as the Oja’s
Learning Rule [2], the modified SVD/ED (e.g., QR decomposi-
tion, Lanczos method, power method, Jacobi rotation) [3]–[6],
the Rank-one update algorithm [7] and a number of subspace
estimation methods derived as a constrained or unconstrained
optimization problem [8]–[11]. Most of the literature assumes
that all the information is available at a single location. Re-
cently, several authors [12]–[16] have considered alternative
approaches to enable a distributed in-network computation
by means of network diffusion (gossiping) using only local
communication. These mechanisms significantly decrease the
overall network discovery cost, and they are resilient to link
failures and changes in network topology. Examples of in-net-
work signal processing via gossiping are [17]–[23], and also
distributed stochastic optimization [24], distributed Kalman
filtering [25], distributed Least Mean Squares (LMS) filtering
[26], [27], decentralized maximum-likelihood (ML) estimation
[28], decentralized minimax detection [29], distributed covari-
ance estimation [20], and decentralized subspace estimation
[30]. A Gossip-like approach to compute principal eigen-
vectors called Decentralized Orthogonal Iteration (DOI) was
first proposed in [31]. It also utilizes a gossiping algorithm pre-
sented in [32] for distributed computation of an optimal weight
matrix. A refined version of DOI was proposed in [33] for
computing the second largest eigenvalue and its corresponding
eigenvector. Both papers assume that the covariance matrix,
whose sparsity structure mimics the static network, is already
calculated and its entries are distributed across the network.
In this paper, we propose a different distributed approach for
adaptively estimating the principal subspace, given only the
received signals. We extend the work in [30] to the principal
subspace estimation considering both a deterministic scheme
and a randomized scheme for message passing. Our primary
goal is to demonstrate that the proposed distributed eigenvector
and subspace tracking algorithms can achieve similar perfor-
mances as compared to their centralized computations.

C. Data Fusion Schemes

The need for distributed subspace estimation is motivated by
the many applications that resort to PCA to extract information
from sensors’ measurements. A typical WSN consists of spa-
tially distributed sensors, which cooperatively monitor the envi-
ronmental conditions of interest. Oftentimes, sensors have lim-
ited communication range, computation resources and memory.
Also, wireless networks are subject to changes in communica-
tion topology due to fading. Therefore, in the context of WSN,
it is widely recognized that a distributed data fusion protocol
that is resilient to link failures and self-adaptive to changes in
network topology, is an appealing option.

As shown in Fig. 1, we assume that all the sensors in the net-
work are restricted to near-neighbor/local communication. The
network is assumed to be connected in expectation. To simplify
the analysis, we first consider an ideal case, where local com-
munication is performed through a static network, in which time
is equally divided into time slots and every node simultaneously

Fig. 1. Near-neighbor communication topology.

updates its own variable with a weighted average of its neigh-
bors’ values. Data exchanges are assumed to be perfect with no
link failure. To extend the results beyond this ideal case, this
paper introduces a second version of the algorithms using a ran-
domized gossip scheme for data fusion, where, in the time that
elapses between one sample and the next, the sensor nodes ex-
change messages at random times to update their corresponding
computations. Also, link failures are modeled and analyzed in
this framework.

Notation and Outline

Let the EVD of be , in which,
for , are the eigenvectors of and their as-
sociated eigenvalues are ordered from high to low. Denote the
principal eigenvector of by and an estimated
one by . Let represent a matrix con-
taining columns of the principal components of , that is

. Denote by an equivalence class
to and an estimated principal subspace by . Our goal is to
iteratively compute a vector and a matrix such
that and , respectively.

Denote by the th element of the matrix . The
symbol represents an element by element/Hadamard matrix
product. Also, denotes the trace of a matrix in the paren-
thesis. Frobenius norm of a matrix is defined by

. Furthermore, as mentioned before, we discrimi-
nate the true principal eigenvector and the subspace spanning
the principal components using the roman letters and
respectively, and the calligraphic versions and for their es-
timates.

The organization of this paper is as follows. After briefly
presenting the system’s mathematical model in Section II,
Section III introduces a deterministic data fusion scheme which
is called distributed average consensus protocol. Following
that, we derive adaptive algorithms incorporating the distributed
average consensus protocol in a synchronous time model for
computing the principal eigenvector and the -dimensional
principal subspace of a signal’s covariance matrix, and provide
stability analysis in Sections IV and V, respectively. Section VI
presents the distributed eigenvector and subspace tracking
algorithms using a randomized gossip algorithm. Connections
between the deterministic algorithms with synchronous updates
and the randomized gossip algorithms for subspace tracking
are also highlighted.
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II. PROBLEM SETUP IN A STATIC NETWORK

Assumption 1: The received signal is a zero-mean sta-
tionary process. We assume that is sufficiently large such
that its covariance is well approximated by the
sample covariance .

represents the undirected graph associated
with the given connected time-invariant network. The set

denotes the nodes, and the set is a
collection of edges which describes the available links in
the network. Let Assumption 1 hold. The principal eigenvector
tracking problem consists of adaptively computing the eigen-
vector of which is approximated by the sample covariance

, given the sampled vectors for .
To extract the principal eigenvector of , consider the well-

known Oja’s learning rule [2], [34],

(2)

where is an unit vector. Over the time, the Oja’s learning rule
in (2) converges uniformly to the principal eigenvector of if
certain conditions are met [34]. Notice that the computation of
the learning rule (2) requires access to the entire vector of ob-
servations . In a centralized network, this can be achieved by
passing all the observations to a data fusion site. However, in a
decentralized network, each node only possesses the knowledge
of its own observation . The key idea to decentralize the
computation in (2) is to have each node compute only its corre-
sponding entry of the eigenvector estimate, rather than compute
the entire vector . Observe from (2) that each component of

is updated as follows:

Therefore, the th node can compute in a distributed way
provided that it can obtain (a reasonably good estimate of) the
inner product . Hence, all it takes to decentralize the ap-
plication of Oja’s rule is a distributed method to compute an
inner product. Section III shows how an average consensus pro-
tocol can be used to compute this inner product in a distributed
manner.

III. DISTRIBUTED AVERAGE CONSENSUS PROTOCOL

Recall that it is required to compute an inner product
distributively, where a priori

the th node only has access to the th components of
and . Since addition is distributive, it can be anticipated
that this is achievable, and indeed, the problem is essentially
equivalent to the well-studied average consensus problem
[14], [16], [35] of computing distributively the average value

of each node’s state, which is set to
be .

Let be the initial value. Hence,

(3)

Fig. 2. Average Consensus Protocol performed at the �th node.��� denotes the
weight matrix.

represents the initial state vector to the network. A distributed
average consensus protocol iteratively computes the average

at each node as illustrated in Fig. 2.
Specifically, at the th average consensus iteration, node
receives data ’s from its near neighbors for .
It then updates the value to by taking a weighted
average of all the received data ’s and the value
obtained from the previous iteration.

Define a symmetric weight matrix for the given
undirected network graph . The th entry of
is the weight associated with the edge . In particular,

if and only if and
otherwise. Notice that has the same sparsity

pattern as the network graph. Moreover, is doubly sto-
chastic (i.e., , ), and hence is an
eigenvector associated with its largest eigenvalue .

The average consensus iteration performed at node
is , for

, where is defined in (3) and is an index
counting the number of consensus iterations performed. A
vector form of this iteration is . For finite , a
vector-valued approximation for the average in terms of
is

(4)

The following assumption, which summarizes the results
from [14], states conditions for the network to achieve asymp-
totic average consensus.

Assumption 2: For a given undirected network graph
and its associated doubly stochastic weight matrix

, the convergence conditions imposed on the network are
(1) the graph is connected, (2) is doubly stochastic, and
(3) .

If Assumption 2 is satisfied, this indicates [14]

(5)

where denotes the number of average consensus iterations
performed. As approaches to infinity, the value
computed at each node converges to the averaged value (i.e.,

) of the initial state vector . For a finite number
of iterations, the error [14] is bounded by

(6)
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IV. DECENTRALIZED PRINCIPAL EIGENVECTOR COMPUTATION

VIA AVERAGE CONSENSUS

Algorithm

Consider the problem of distributively computing the first
principal component of based on the Oja’s learning rule (2)
via near-neighbor communication. Our idea is simple. We pro-
pose to compute, at each time , the th component of the esti-
mate , following the Oja’s learning rule updated locally

(7)
via several iterations (i.e., ) of the average consensus protocol
for distributively estimating the inner product . Once
each node approximately reaches a consensus, it then updates
its local estimate using (7).

Algorithm 1: Principal Eigenvector Estimation (at node )

input: A sequence of

output: The th element of the principal eigenvector estimate

1: Initialization: ;

2: ;

3: Recursion:
4: foreach do

5: ;

6: ;

7: end

Algorithm 1 summarizes the proposed distributed principal
eigenvector estimation, where the scalar denotes the stepsize.
We refer to [8], [34], and [36] for more detailed discussions on
the stepsize rule. However, the asymptotic performance of a sto-
chastic approximation is not affected by the choice of the step-
size [36]. Here, is initialized as an unit vector. For conve-
nience, we denote by the output of av-
erage consensus iterations at node given the initial value argu-
ment. Its implementation is illustrated in Fig. 2. We remark that
the algorithm as stated requires knowing the number of nodes

in the network. This number itself can be estimated using
average consensus, for example using the method proposed in
[37]. We will discuss the implementation of an average con-
sensus protocol given a matrix-valued argument in Section V.

For future reference, we first state some properties of
Hadamard product [38].

1) Property 1: Let , , , , and
be a Hermitian matrix, then

1) ;

2) ;

3)

At time , each node obtains a signal sample and a
local eigenvector estimate . The initial state vector to
compute the inner product is . Using
(5), the distributed estimate of , after average con-
sensus iterations, is . Hence, (7)

can be written in a vector form as , where
. Substituting the expression

for and applying Property 1.1, the network-wide update is

where

(8)

A. Stability Analysis

This section studies in detail the convergence properties of
Algorithm 1 by deriving the so-called associated Ordinary Dif-
ferential Equation (ODE) [39] of the stochastic approximation
in (8). The ODE analysis studies the asymptotic behavior of
a system. Hence, we assume the stationarity assumption (As-
sumption 1) to hold over a long time horizon and to be small.
Under certain conditions, we will show that the magnitude of
the estimate using Algorithm 1 converges to a value that is in
a neighborhood of 1. The distance between the stable equilib-
rium point of the ODE and the principal eigenvector
of decreases as increases.

Assumption 3: The step-size is sufficiently small.
Assumption 4: The largest eigenvalue of has multiplicity

one.
Let Assumption 3 hold. The associated ODE of the stochastic

approximation [40] of is defined as . Sup-
pose Assumption 1 and 4 are true. By definition, the ODE of (8)
is

(9)

where , because the network is static
and thus matrix is time-invariant.

Let the EVD of be
with , then

, where is a rank one matrix
and . Using this decomposition of

and the relation for any arbitrary
matrix , the ODE expression in (9) can be written as

(10)

where
, for sufficiently large. Equation

(10) can be interpreted as the decomposition of the ODE into its
equivalent form in a centralized network and the ODE devia-
tion influenced by the decentralized network topology. The fol-
lowing part of this section is dedicated to characterize the norm
of the eigenvector estimate and provide necessary condi-
tions for the decentralized algorithm to converge.

To study the stability of , we obtain the following dy-
namical system for :

(11)
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where

(12)

represents the trajectory of the decentralized devi-
ating from the trajectory of centralized (i.e., ) estimate
of . Furthermore, the equilibrium point of (11) is

(13)

which, for finite , lies in the neighborhood of 1 as stated in the
following lemma.

Lemma 4.1 (Stability of ): Suppose Assumption 1, 2,and
3 hold. Let denote the second largest eigenpair
of . For any fixed number of average consensus iterations

satisfying , the equilibrium
point of is contained in the interval

(14)

Proof: See Appendix A-A.
Since is also the largest eigenpair of , then the

approximation holds. Using Property 1.2,
1.3, and the approximation on yield (34), that is

Let , then the ODE in (10) can be
written as

(15)

Define another dynamical system
which is called Oja’s flow for computing the principal compo-
nent of , and its convergence properties are studied in [2], [34],
[41]. Denote the derivative of by . We call a pertur-
bation of the Oja’s flow if

and

are small for all . Suppose the open set
and is initialized in

a neighborhood of its equilibrium point. The next two theorems
[42] state general conditions for the equilibrium points of a dy-
namical system to persist under small perturbations.

Theorem 4.1 (Perturbation Theorem): Let be a
vector field and an equilibrium of

such that is invertible. Then there exists a
neighborhood of and a neighborhood of such
that for any there is a unique equilibrium of

. Moreover, if is normed, for any , we can
choose so that .

A hyperbolic equilibrium means the eigenvalues of
have nonzero real parts. Moreover, is called a

sink if , where is the number of the
eigenvalues of having negative real parts.

Theorem 4.2: Suppose that is a hyperbolic equilibrium.
In Theorem 4.1, and can be chosen so that if , the
unique equilibrium of is also hyperbolic
and it has the same index as .

Using Theorems 4.1 and 4.2, the following lemma states the
convergence property of the ODE in (15).

Lemma 4.2 (Convergence): Let Assumption 1, 2, 3, and 4
hold. For small, the ODE is a
perturbation of . Moreover, has a stable equilibrium
point (i.e., a sink) and it is in a neighborhood of (i.e., the
principal eigenvector of ) within a radius of

Proof: See Appendix A-B.

V. DISTRIBUTED -DIMENSIONAL SUBSPACE TRACKING VIA

AVERAGE CONSENSUS GOSSIPING

Consider the cost function [11]

in which denotes the -dimensional principal sub-
space estimate of the covariance . [11] proves that there exists
a global minimum of , and spans the principal eigen-
vectors of provided that Assumption 5 is true and has full
rank.

Assumption 5: The th largest eigenvalue of has multi-
plicity one, that is, .

Hence, the principal subspace tracking problem can be cast
into an unconstrained minimization problem. The gradient of

with respect to is .
Let Assumption 3 hold. The steepest descent method yields

One can estimate the covariance matrix by its instantaneous
one (Assumption 1). Hence, the subspace update equation
using only the received data can be written as

(16)

where

(17)

Authors in [8] and [9] refer to this as Normalized Oja (NOja)

because if , the update (16) is identical to Oja’s
flow [41] for extracting p-principal component subspace.

Similarly to what we have done previously to decentralize
Oja’s learning rule, we want to decentralize the computation of
NOja’s algorithm by having each node compute only the corre-
sponding row of a subspace estimate . Consider the NOja’s
algorithm in (16) updated at each node:

(18)
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where is the th row of . The NOja’s update in a
decentralized network requires distributively estimate the vector

and the Hermitian matrix . Both estimates
can be achieved using the average consensus protocol described
earlier with some simple modifications.

A. Average Consensus Protocol for Matrices

Suppose that are the columns of
the subspace estimate and denotes the th row of

, then . Let
be the initial state vector at node , and hence

is the initial state matrix.

Then the average consensus iteration performed at each node
given a vector-valued input is

(19)

Let Assumption 2 hold. The output using (19) is

(20)

where the th row of corresponds to the th node’s estimate
of .

Moreover, of the matrix , the th node only

has access to . Notice that each row of is
a vector-matrix product of the form , which can be
distributively estimated using (19) by replacing with

for . Hence, the matrix estimate of can
be computed in parallel row-by-row using (19) and each row
converges to the vector-matrix product . Or equiva-

lently, since , then

let be the initial state input

matrix at node , then

(21)

describes one update of the average consensus protocol per-
formed at each node given a matrix-valued input.

Algorithm

Consider the problem of distributively computing the prin-
cipal subspace of based on the NOja’s update (16). The key
idea is to decentralize the computation of (16) by having each
node only updates its local subspace estimate. Upon receiving
the sampled vector at time , the proposed algorithm itera-

tively estimates and as described in (19)
and (21), respectively. After every node reaches an approximate
consensus, it then updates its local estimate of using (18).

Algorithm 2 summarizes the implementation for distribu-
tively tracking the principal subspace of . Here, is an initial

matrix with the property that . One simple con-
struction of is to set to be one at its diagonal for

and zero everywhere else, and

denotes the output of average consensus iterations at each
node given the initial state input argument. The argument can
be a vector or a matrix, and the output is a vector/matrix of the
same size.

Algorithm 2: p-D Subspace Tracking (at the th node)

input: A sequence of

output: The th row of the principal subspace

1: Initialization: ;

2: , ;

3: Recursion:
4: foreach do

5: ;

6: ;

7: ;

8: ;

9: ;

10: end

1) Property 2: Let , , and denote by ,
Hermitian matrices, then [38]:

1) ;
2) if is positive semidefinite,

;
3)

;

4)
The remaining part of this section is dedicated to study the

convergence properties of Algorithm 2. In between each sam-
pling interval , node distributively computes a local
subspace estimate until at time when a new data
sample is received. The initial state matrix to compute the
vector-matrix product is . Using
(20), the distributed estimate of is

(22)

Moreover, the distributed estimate for at node is

... (23)

(see Appendix B-A for a detailed derivation). Combining the
results from (22) and (23) yields

where

(24)

(see Appendix B-B).

B. Stability Analysis

The asymptotic properties of the proposed algorithm are the
properties of the ODE determined by the “mean” dynamics
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of the algorithm. Under certain conditions, we will show that

the magnitude of diminishes. Furthermore, the
matrix-valued estimate converges to an equilibrium point,
which, for a finite value of , stays in the neighborhood of the
principal subspace of .

Let Assumption 1, 3, 4 hold. The ODE in [40] of (24) is

where , since the network is assumed to
be static. Let , then the preceding expression can
be written as

(25)

(26)

with being the trajectory deviation from the decentral-
ized ODE to the centralized ODE of .

Similarly to the principal eigenvector estimation problem, we

want to study the trajectory of to learn the stability of (25).

The trajectory of is

where

(27)

represents the deviation of the decentralized approxima-

tion of from its centralized approximation. The ODE ex-
pression implies that is the only equilibrium point

and thus . The size of is influenced by
the overall network’s connectivity. By increasing the number of
average consensus iterations in the network, the norm of
diminishes as stated in the next lemma.

Lemma 5.1 (Stability of ): Suppose Assumption 1, 2,

3, and 5 hold. The ODE of converges asymptotically to
a neighborhood of if the number of average consensus it-
erations is sufficiently large. Specifically, the difference be-

tween and decreases exponentially with , that is

.

Proof: See Appendix C-A.

We propose to use Lyapunov stability analysis to argue the
convergence of Algorithm 2. The Lyapunov stability analysis
is based on the concept of energy, denoted by a Lyapunov
function candidate (LFC) . When a system reaches
its equilibrium point, the total energy is zero or at
its minimum. Hence, we choose to define a LFC as

,

which is the expected power of the received vector projected

onto the estimated noise space . If the time evolution
of is negative except at , then at the equilib-
rium the total expected power of projected onto the space

is at its minimum. The time evolution of the
Lyapunov function of the proposed algorithm is

where

By a change of variable as in (40), we have
. It is expected that for sufficiently large, the

derivative of the LFC function

is a perturbation of the following dynamical system

In particular, and

are small for any with in a neigh-
borhood of . Consider as an unperturbed time
evolution of the Lyapunov function . Since it is always
less or equal to zero, the “energy” is a monotonically
decreasing function until (i.e., reaches its
minimum), or . Yang in [11] proves that the subspace
estimate spans the largest eigenvalues of if and only if

when is at its minimum (i.e., for ).
We denote this equilibrium point by and thus .
Theorem 4.1 says that if is a perturbation of ,
then there exists an unique equilibrium point of

and it is in a neighborhood of the equilibrium point
of . Therefore, for large enough, or in other

words, when is a perturbation of , the value
is close to , and their difference decreases with an

increase in . Hence, the time evolution of governed by
the perturbed system also decreases until it reaches to

, which sits in a neighborhood of . Using the result
from the perturbation theory, there exists an equivalence class
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such that the cost function is close to

its minimum for , and it is anticipated that
is in a neighborhood of the true principal subspace
of within a radius that decreases as increases.

VI. PRINCIPAL SUBSPACE TRACKING VIA

RANDOMIZED GOSSIPING

Up to this point, we have considered the distributed subspace
tracking problem in a static network using a distributed av-
erage consensus protocol, where the consensus updates are syn-
chronous. This section, instead, considers a randomized gossip
algorithm [16] with asynchronous updates for data diffusion.
Specifically, data are still synchronously sampled, but in the
time that elapses between two sampling times , informa-
tion is processed asynchronously. Hence, there is a separation
of time scales. Message exchanges among nodes are triggered
by random events that are modeled as a Poisson process at a rate

. When a clock ticks, the node randomly selects one of its
neighbors to exchange values with. The main objective of such
relaxation (i.e., from synchronous to asynchronous update) is to
show that we do not need to perform an accurate scheduling of
local communication among sensors for the algorithms to con-
verge. Connections to the algorithms based on a deterministic
and synchronous gossiping for data fusion are also highlighted.

A. Randomized Gossip Algorithm Without Collisions or Link
Failures

Consider a particular class of gossiping algorithm using an
asynchronous time model, in which each node contacts and ex-
changes information with no more than one of its neighbors
when its internal clock ticks. This class of gossiping protocol
has received a great attention recently [12], [13], [16]–[18] for
numerous reasons. First of all, communication is simple and
there is no need to store and maintain routing information. It
is resilient to changes in network topology. The overall perfor-
mance of the network is not compromised by eliminating the
fusion center.

Suppose that a clock attached to the th node ticks at an arbi-
trary time . Then node picks a neighbor to exchange data

and with and then updates
, where is the index counting the number

of pairwise exchanges occurred. The network repeats the same
process at time when another clock ticks. One can model
the network as an undirected graph , where
represents a connected link at time . Furthermore, denote by

a collection of all possible edges that node can connect
with. If describes one pair-wise connection associated with
node at time , then is a subset of . The randomness
of a link is modeled by assuming that node ’s clock ticks at an
arbitrary time with a probability and node picks node
with some probability, that is

Prob. of node chooses node

(28)
Since the available link varies with time , the weight ma-

trix is, hence, time-varying and we denote it by . Let be

the expected value of , then [16] has shown that is a sym-
metric positive-semidefinite doubly stochastic matrix and it can
be expressed as , where

is a diagonal matrix with entries .
In addition, its second largest eigenvalue equals to

. Suppose the network is able to construct
a probability matrix with , then .
It turns out that the randomized gossip algorithm will converge
to the mean value in expectation if the following assumption is
satisfied.

Assumption 6: For a given undirected network graph
and its associated expected weight matrix ,

assume (1) the graph is connected in expectation, (2) is
doubly stochastic, and (3) .

Algorithm

The subspace tracking algorithm via randomized gossiping
follows almost the same procedure as in Algorithm 1 and Algo-
rithm 2. The only difference is the way to compute the average at
the consensus step, . Specifically, instead of
simultaneously taking a weighted average of all the neighbors’
data, the randomized gossip algorithm connects two nodes at an
arbitrary time, exchanges their values pair-wisely and then up-
dates accordingly.

The remaining part of this section studies the convergence
properties of the proposed algorithms via the randomized gossip
scheme. Recall that, in a static network, the convergence prop-
erties of Algorithm 1 and Algorithm 2 are determined by the
second largest eigenvalue of the matrix . Since

for any is deterministic and it satisfies As-
sumption 2, we get

(29)

As increases, the error introduced by the decentralized net-
work diminishes. Hence, if we can obtain a similar result for the
expected weight matrix of the randomized gossip algorithm, the
convergence results will hold.

In the randomized gossiping scheme with asynchronous up-
dates, we have equal to

(30)

because the weight matrices are independent and identically
distributed (i.i.d.). Following the same methodology as in the
deterministic case, prior to perform an update at time , the
proposed algorithms need to first reach a consensus on the
unknown parameters using the randomized gossip algorithm
for number of iterations. In particular, is a Poisson
distributed random variable because data exchanges among
nodes are modeled as a Poisson process with a rate parameter

. Let be the sampling time. Then the probability of
is , because the number of
clock tickings (i.e., message exchanges) in a fixed time interval
follows a Poisson distribution. Given that are i.i.d., and the
EVD of the expected weight matrix is ,
then we have
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(31)

Hence, the eigenvectors of are identical to

the eigenvectors of , while the eigenvalues are exponen-
tial functions of , that is

, for . Observe that
is a positive-definite matrix and its eigen-

values monotonically decrease with the eigenvalues of .
Specifically, its largest eigenvalue equals to 1 and all the
remaining eigenvalues are strictly less than 1. Furthermore,
suppose the sampling time is fixed, then

The above result is analogous to the relation in (29) of the de-
terministic gossiping scheme. Hence, it is anticipated that for
sufficiently large, the algorithms using the randomized gossip
protocol also converge to the true principal component and the
principal subspace of .

B. Relation Between and

From the earlier derivation, we have obtained

using the randomized gossip protocol with asynchronous
updates for data fusion. On the other hand, in the de-
terministic gossip scheme with synchronous updates,

. We recall that
the rate of convergence is determined by the second largest
eigenvalue of the corresponding (expected) weight matrix.
To find a relation between and ,

should be approximately equal to , that is

. By taking the natural log of both
sides of this equality and by rearranging the terms, we get the
following relation between and :

(32)

Lemma 6.1: Suppose Assumption 1, 3, 5, and 6 hold. Let
denote the sampling time, and represent the rate parameter of
the Poisson process in a network of sensors, where we assume

each clock exhibits a rate Poisson process. is in

a neighborhood of , that is ,

which decreases with .
Proof: Simply replace the value of in Lemma 5.1 with

the value of using the relation in (32).
The convergence property of the subspace estimate will still

hold provided that Assumption 6 holds.

1) Randomized Gossip Algorithm With Random Collisions
and Link Failures: Consider now there exists random (tem-
porary) link failures in the network. Collisions are also mod-
eled as random link failures. Assume that any link in , for

, may fail independently from any other link with
a constant probability across the network. Therefore, the
number of pair-wise data exchanges in a time interval is de-
termined by the actual number of successful links, instead of the
number of clock tickings . Since is assumed to be a con-
stant for all links, it is equivalent to say that the averaged rate
associated with each Poisson clock is decreased by a factor of

. Hence, the new rate parameter equals to the proba-
bility of success multiplied by , that is

(33)

Smaller value of as compared to implies that the network is
less connected in response to random (temporary) link failures.

VII. NUMERICAL RESULTS

The simulated network includes ten distributed sensors, and
the network is generated as a Random Geometric graph [43]
over a unit area with radius . The sensor field is formed
as a linear combination of p narrowband spatial signals cor-
rupted by white Gaussian noise (AWGN) at 20-dB SNR.
denotes the space orthogonal to the signal subspace . All the
simulations are compared with the centralized schemes and the
step-size is set to be 0.001 for all .

Algorithms’ Performances Using a Deterministic Gossip
Algorithm

1) Principal Eigenvector Estimation: Fig. 3 illustrates
the performance of the proposed eigenvector estimation al-

gorithm by examining the trajectories of ,

, and , respectively.
From our analysis, we learned that in order to achieve a similar
performance, the number of average consensus iterations
should increase with the size of a network and decrease with
a network’s connectivity. In our simulation, we set .
That is, the algorithm performs three sub-iterations of average
consensus protocol for data diffusion in between samples and

. Fig. 3(a) shows that the norm of the principal eigenvector
estimate asymptotically approaches to . Fig. 3(b)
indicates that is orthogonal to the noise space over the
time. The MSE as compared with diminishes as shown in
Fig. 3(b). Overall, the decentralized eigenvector estimation
algorithm shows a similar performance as the centralized
algorithm.

2) Principal Subspace Estimation: denotes the
th column of with dimension 4. The performance

of the proposed distributed subspace tracking algorithm
is illustrated in Fig. 4 via examining the trajectories of

, , and

, respectively, for
(centralized network), and . Fig. 4(a) indi-
cates that the vectors in are approximately orthonormal.
Fig. 4(b) shows that becomes orthogonal to the noise space
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Fig. 3. (a) Trajectory of ���� ��� � �� . (b) Projection angle between ���� and� . (c) MSEs.

Fig. 4. (a) Trajectories of ����� ���� � ���� . (b) Projections between the ���� and� . (c) MSEs.

Fig. 5. (a) Trajectories of ����� ���� � ���� . (b) Projections of ���� onto the space� . (c) MSEs.

over the time. The MSE is about 0.1 as shown in Fig. 4(c).
The distributed algorithm is observed to converge faster at
the beginning and then reaches a plateau because of the error
introduced from the distributed computation in the network.
The number of consensus iterations performed at each time
also increases as compared to the case of estimating a single
eigenvector.

Algorithm’s Performance Using a Randomized Gossip
Algorithm

The rate parameter to perform the randomized gossip pro-
tocol is set to be and , which correspond to

and , respectively, in a deterministic scheme.
Hence, between samples and , each sensor performs on

average 3.6 and 7.2 sub-iterations of pair-wise data exchanges.
Assuming no link or node failure, a similar performance of the
algorithm as compared with the deterministic case is observed
in Fig. 5.

VIII. CONCLUSION

This paper proposes a distributed principal eigenvector and
a distributed principal subspace tracking algorithm based on
Oja’s learning rule [2], [8] and NOja’s update equation, respec-
tively. The key idea is to enable an in-network computation al-
gorithm via near-neighbor communication without the need to
set routes to forward the data to a fusion center. From the sta-
bility analysis, we have showed that given a sufficiently large
number of consensus iterations , the system is self-stablizing
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and furthermore, perturba-
tion theorem implies that there exists a stable equilibrium in
a neighborhood of the true subspace. Furthermore, we explore
the convergence properties of the proposed algorithms using a
randomized gossip algorithm for data diffusion. Connections of
these algorithms using a randomized gossip scheme to the ones
using a deterministic gossip protocol are also highlighted.

APPENDIX A

Proof of Lemma 4.1:
Proof: Since is the largest eigenpair of ,

where and , the approxima-
tion holds. Also, is a rank-one ma-
trix with an eigenvalue equals to 1. Hence, its spectral radius is

. Using Property 1.3, we obtain the following ap-
proximation:

(34)

Hence, substituting this relation for in (12) yields

Since the spectral radius of a Hadamard product of two non-neg-
ative matrices is bounded by the product of the spectral radius
of the matrices [44], then

. It can be easily derived that

(35)
Using generalized Rayleigh quotient yields

(36)

Combining the results from (35) and (36) yields
. From (13), we have

For , is bounded in the
interval

This completes the proof.
Proof of Lemma 4.2:
Proof: Since , the function

has equilibrium points, which are the eigenvectors of .
Let be an equilibrium point, then the derivative

with .
By definition, is a sink if for ,

and . It is easy to check that is a sink if and
only if . Using Theorem 4.1, if we can show that is a
perturbation of , then there exists an unique sink in and
it is in a neighborhood of . Let ,
and , then

for all . One can make sufficiently
small; thus, is a perturbation of . Theorem 4.1 implies
that there exists an equilibrium point for the system

and . In addition, Theorem
4.2 indicates that is hyperbolic and it is a sink to the system

.

APPENDIX B

Proof of the Claim in (23):
Proof: In order to decentralize any expression of interest,

we need to first decompose it into a sum of local variables and

then apply (5). Let , then can
be written as

...
. . .

...

Information known at node
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where each row represents . From (20), we obtain a
decentralized estimation of at node and it is

Provided that average consensus iterations are performed, the
th node’s approximation of the matrix is

...

by stacking the approximations at node for all rows
.

Proof of the Claim in (24):
Proof: Using Property 2.1 and the expression in (22), the

decentralization of is

(37)

Furthermore, given the decentralization of in (37)
and expression in (23), the th node’s decentralized approxima-
tion of is

...

Using Property 2.2, the preceding relation can be reduced to

Therefore, the decentralization of is

(38)

Using the result in (22), which says that the decentralization of
at node is , the th node’s

decentralized approximation of is

Provided with the above approximation of at
node , the th row of the decentralized is

Using Property 2.2, the preceding expression be-
comes . Substituting
the expression for and use Property 2.2, we get

.
Hence, the network-wide decentralization of

is

(39)

Using the results in (37), (38), and (39) in place of the cor-
responding centralized matrix-products in (16) completes the
proof for the network-wide decentralization of the p-dimen-
sional principal subspace updating algorithm.

APPENDIX C

Proof of Lemma 5.1:
Proof: Apply the approximation to

(25), we obtain

(40)

where

Hence, over the time, we have

(41)

Using Property 2.3, 2.4, 2.5 for and the sub-multi-
plicative property of Frobenius norm yield
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where . Combining this bound with

(41) and using the triangular inequality

yield that lies within the in-

terval of

. Hence, the norm is bounded
around , and

This completes the proof.
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